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 Introduction 

 One  of  the  problems  in  systems  biology  remains  the  lack  of  understanding  of  the 
 large-scale  biological  relationships  between  genes  and  the  proteins  they  encode.  The 
 wide  availability  of  system-level  gene  expression  datasets  makes  it  possible  to 
 reconstruct  hidden  regulatory  relationships  between  gene-gene  and  gene-protein,  or  to 
 reverse-engineered  gene  regulatory  networks  (GRNs)  [1].  GRN  comprises  nodes  (the 
 genes  and  their  regulators)  and  edges  (the  regulatory  relationships  between  the 
 nodes).  It  is  usually  represented  mathematically  as  an  oriented  graph.  The  nature  of 
 the  interactions  in  GRNs  distinguishes  it  from  other  networks  in  biological  systems. 
 The  interactions  between  molecules  in  GRNs  usually  involve  the  indirect  regulatory 
 interaction  through  the  biological  molecules,  which  are  hard  to  detect  and  quantify. 
 Consequently, GRNs are harder to validate. 

 The  GRNs  we  know  are  the  result  of  a  long  biological  evolution.  The 
 phylogenomic  analysis  makes  it  possible  to  classify  genes  based  on  the  oldest  species 
 that  carry  orthologous  genes  [2,  3].  For  protein-protein  interaction  (PPI)  networks  in 
 yeast  and  human,  it  was  shown  that  proteins  of  the  same  age  tend  to  interact  more  [4, 
 5]. 

 This  project  aims  to  explore  if  gene  interaction  preference  for  genes  of  similar 
 age  holds  in  gene  regulatory  networks,  particularly  in  those  that  describe  direct 
 regulatory  interaction  (transcription  factor-target  gene).  Existing  network  prediction 
 methods  rely  primarily  on  expression  data.  If  gene  interaction  preference  for  genes  of 
 similar  age  holds  in  gene  regulatory  networks,  incorporating  biological  knowledge 
 into  network  inference  methods  could  help  to  improve  the  reliability  of  the  GRNs 
 inferred from expression data. 

 Materials and methods 

 For  the  analysis,  we  used  three  gene  regulatory  networks.  Yeast  GRN  is  a 
 complete  transcriptional  regulatory  network  (Tnet)  [6].  The  other  two,  Mouse  GRN 
 and  Human  GRN,  are  manually  curated  databases  (TRRUST  v2)  [7].  Data  contain 
 the  list  of  links  between  transcription  factors  (TF)  and  corresponding  target  genes 
 (TG). All edges have been experimentally confirmed earlier. 
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 First,  we  studied  the  GRNs  structure  using  NetworkX  2.8.1  [8]  and  pandas  1.4.2 
 Python 3.10.1 libraries [9]. 

 Yeast  GRN  has  4  441  genes  with  12  873  interactions.  Of  these,  157  genes  are 
 TF,  and  4  410  are  targets.  The  average  number  of  interactions  for  nodes  is  2.8987. 
 Mouse  GRN  has  2  456  genes  with  7  057  interactions.  Of  these,  827  genes  are  TF,  and 
 2  092  are  targets.  The  average  number  of  interactions  for  nodes  is  2.6425.  Human 
 GRN  has  2  862  genes  with  8  427  interactions.  Of  these,  795  genes  are  TF,  and  2  492 
 are  targets.  The  average  number  of  interactions  for  nodes  is  2.9444.  We  used  three 
 methods  to  obtain  age  classes:  protein  age  classes  [2],  GenOrigin  database  [10]  and 
 calculated using a phylostratigraphy approach [3]. 

 Protein  age  classes  [2]  were  translated  into  gene  age  classes  using  protein-gene 
 name  matching  from  the  YeastGenome  [11]  and  UNIPROT  [12]  databases. 
 Interaction  maps  of  TF  and  targets  and  TG/TF  heatmaps  were  built  for  each  GRN. 
 Finally,  the  "difference"  of  ages  in  relationships  was  calculated.  The  number  is  the 
 difference between the ages; the smaller, the closer the ages of the interacting genes. 

 We  used  the  gene  ages  from  the  GenOrigin  [10]  database  to  calculate  the  same 
 parameters  as  for  protein  classes  for  Yeast  GRN  parameters.  We  used  the  GenOrigin 
 phylogenetic tree to convert a numerical age into an age class. 

 We  used  a  phylostratigraphy  approach  [2]  to  determine  the  age  of  yeast  genes  in 
 GRN.  The  iTOL  tree  [13]  phylogeny  was  used  in  the  analysis  to  truncate  the  swiss 
 DB.  We  compared  4  184  yeast  gene  sequences  by  BLAST  (blastx)  against  truncated 
 the Swiss-prot [14] database (94 268 sequences, (10-3 E-value cutoff). 

 We  tested  the  possibility  of  randomly  obtaining  the  derived  age  class  ratios  in 
 the  gene  regulation  network.  We  randomly  reassigned  age  classes  to  1000  yeast, 
 mouse,  and  human  GRNs  to  do  this.  The  percentage  of  each  "age"  interaction 
 distance  for  each  network  was  calculated.  For  each  resulting  age  distance  distribution, 
 the standard deviation was counted. 

 The  workflow  is  represented  in  the  .ipynb  files  and  available  in  the  GitHub 
 repository  https://github.com/Freddsle/age_patterns  . 

 Results and Discussion 

 After translation and mapping protein age classes to GRNs, age was determined 
 for 3 437 (77.4%) genes in Yeast GRN, for 2 287 - (93.1%) in Mouse GRN, and 2 
 855 (99.8%) - in Human GRN. For the genes, 8 age classes were identified for each 
 GRN. Cellular_organisms, Euk+Bac, Euk_Archaea, Eukaryota, Opisthokonta classes 
 were found in all three networks. Dikarya, Ascomycota, Saccharomyceta classes 
 present in Yeast GRN, and Eumetazoa, Mammalia, Vertebrata in Mouse and Human 
 GRNs. 
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 The proportion of the 'Eumetazoa->Eumetazoa' and 'Eumetazoa->Vertebrata' 
 interactions are the largest among all interactions for mouse and human GRNs (each 
 is more than 10%). On average one TF controls more targets (maximum up to 25) in 
 the yeast network than in mouse (up to 6) and human GRN (up to 8). For yeast GRN, 
 younger nodes have more edges to different age nodes in the network than older 
 nodes. For mouse and human GRNs, the differences are less noticeable. There is no 
 such drop in the number of connections with increasing age. 

 Human and mouse GRNs have demonstrated a tendency for genes from similar 
 age groups to interact more with each other than with more "distant" age groups. For 
 the yeast GRN, this does not seem to be the case. 

 The gene ages calculated from the protein ages gave different results for human 
 and mouse, and yeast GRNs. Therefore, we decided to use the gene ages from the 
 GenOrigin. After mapping, we determined the age class for 4 184 genes (94.2%) in 
 Yeast GRN. 

 TF of the 'Dikarya' age class control fewer targets than other TF classes; there 
 are less than six targets per 'Dikarya' TF. Also, targets of 'Dikarya' and 'Opisthokonta' 
 classes are controlled by m0000ore TF than other target classes. There are less than 5 
 'Opisthokonta' targets per TF. For 'Dikarya' TF and 'Opisthokonta' targets, the 
 proportion of links among all links in the network is minimal for any edges (less than 
 0.3% for any combination). 

 Using gene ages from the GenOrigin, there is no significant predominance of 
 interactions between similar age classes in the yeast network. Edges with age 
 distances 0 ("same age") and 1 ("close age") account for less than 35% of all edges. 

 When using phylostratigraphy, the fraction of "same age" interactions (distance 
 between ages is 0) has increased. However, this observation may be caused by the 
 truncated tree, in which all age classes older than eukaryotes also received the label 
 eukaryotes. Also, even though the 'Opisthokonta' class was sufficiently represented in 
 the truncated Swiss database, the number of targets of this age class turned out to be 
 less than expected. Therefore, we plan to blast GRNs genes to a fine-grained tree 
 with a more uniform representation of nodes across gene classes. 

 Was it possible to obtain preferences in the interaction in a random network? 
 We determined interaction preference only for certain age distances (distances are 2, 
 7 or 8) using the method with randomly assigned classes in Yeast GRN. 

 Conclusion 

 Unfortunately, we cannot confidently say that our hypothesis about gene 
 interaction preference in GRN has been confirmed. None of the three methods used 
 to obtain gene ages showed that interactions of "same" and "close" age are dominated 
 in yeast GRN. There are no significant differences compared to the model where the 
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 age categories are randomly assigned. We need a more correctly formulated null 
 hypothesis (a method for obtaining a random network) or a more correct phylogenetic 
 resolution (a fine-grained tree with a more uniform representation of nodes across 
 gene classes). 
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